
A Host-based Anomaly Detection Approach by

Representing System Calls as States of Kernel

Modules

Shariyar Murtaza and Wahab Hamou-Lhadj

Software Behaviour Analysis (SBA) Research Lab

Concordia University, Canada

Dec 10, 2013 at AHLS Meeting

Intrusion Detection Systems (IDS)

• Monitor computer or network activity for signs of

intrusions and alert administrator

• Provide information for forensics analysis

• Administrator confirm or refute IDS alerts

2

IDS Taxonomy: Detection
Behaviour

• Signature based Detection
– Look for events that match patterns of known attacks

– Can only detect attacks for which a signature exists

• Anomaly Detection • Anomaly Detection
– Look for significant deviations from normal system behavior

– Theoretically, it should be able to detect any attack

3

IDS Taxonomy: Protection
Behaviour

• Network-based (NIDS) monitor network traffic for

multiple hosts

• Host-based (HIDS) monitor activities of host systems

– e.g., system calls, application logs and file systems– e.g., system calls, application logs and file systems

4

Host-based Anomaly Intrusion
Detection Techniques

• Researchers applied different algorithms on logs or

system calls to detect anomalies, such as:

– Sliding window technique

– HMM – HMM

– Neural networks (two-class)

– K-means

– Varied length n-gram technique

– Context Free Grammar

5

Limitations

• High false positive or false alarm rate

– Any unknown sequence is considered anomaly by

the sliding window technique

Sequence 1 fork read read fork read read fork read read

Normal

• High processing time

– Time to train HMM

Sequence 2 fork read read fork read fork read read fork

6

Unknown

Kernel State Modeling (KSM)

• KSM is an anomaly detection technique

– Transforms system calls into kernel

modules, called states

– Detect anomalies at the level of interaction

of states

7

Transforming System Calls into
States of Kernel Modules

State Module in Linux Source Code # of System Calls

AC Architecture 10

FS File System 131

IPC Inter Process Communication 7IPC Inter Process Communication 7

KL Kernel 127

MM Memory Management 21

NT Networking 2

SC Security 3

UN Unknown 37

8

[Ref]: http://syscalls.kernelgork.com

Transforming System Calls into
States of Kernel Modules

Sequence fork read read fork read read fork read read

Sequence fork read write write write write write write read

Sequence read read read fork write close open open open

9

Sequence read close write write close write close read read

Sequence Fork read read fork read read fork read read

Transforming System Calls into
States of Kernel Modules

Density

Plot

10

Plot

Anomaly Detection in Firefox

11

Normal Anomalous

Anomaly Detection in Login Utility

12

Normal Anomalous

Automatically Detecting
Anomalies

Trace # FS KL MM Type

1 0.60 0.20 0.00 Normal

2 0.54 0.06 0.40 Normal

3 0.73 0.04 0.23 Normal

4 0.74 0.05 0.03 Normal

5 0.82 0.01 0.03 Normal

6 0.82 0.03 0.11 Normal

7 0.55 0.15 0.19 Anomalous

8 0.53 0.16 0.20 Anomalous

13

Xlock

Program

Automatically Detecting
Anomalies

• To determine significant deviation threshold (alpha):

– Divide normal dataset into training set, validation

set, and testing set

– Extract probabilities from training set– Extract probabilities from training set

– Evaluate on validation set and adjust alpha till no

false alarms

– Measure accuracy on testing set

Case Study 1: Dataset

Program # Normal Traces #Attack
Types

#Attack
Traces

Training Validation Testing

Login 4 3 5 1 4

PS 10 4 10 1 15

Stide 400 200 13126 1 105

Xlock 91 30 1610 1 2

Firefox 125 75 500 5 19

15

Case Study 1: Results

Program Technique TP rate FP rate

Login KSM (alpha=0.00) 100% 0.00%

Stide (win=6) 100% 40.00%

Stide (win=10) 100% 40.00%

HMM (states=10) 100% 40.00%

PS KSM (alpha=0.02) 100% 10.00%PS KSM (alpha=0.02) 100% 10.00%

Stide (win=6) 100% 10.00%

Stide (win=10) 100% 10.00%

HMM (states=5) 100% 30.00%

Xlock KSM (alpha=0.04) 100% 0.00%

Stide (win=6) 100% 1.50%

Stide (win=10) 100% 1.50%

HMM (states=5) 100% 0.00%

16

Case Study 1: Results

Stide KSM (alpha=0.06) 100% 0.25%

Stide (win=6) 100% 4.97%

Stide (win=10) 100% 5.25%

HMM (states=5) 100% 0.25%

Firefox KSM (alpha=0.08) 100% 0.60%

Program Technique TP rate FP rate

Firefox KSM (alpha=0.08) 100% 0.60%

Stide (win=6) 100% 44.60%

Stide (win=10) 100% 49.20%

HMM (states=5) 100% 1.40%

17

Case Study 1: Execution Time

Size of All
Traces

KSM Stide HMM

Login 26.2KB 4.46 secs 0.03 secs 56.43 mins

PS 29.6KB 5.14 secs 0.11 secs 46.24 mins

Xlock 47.4MB 1.51 mins 12.3 mins 13.37 hrs
Stide 36.2MB 5.85 mins 8.53 mins 2.3 days

Firefox 270.6MB 9.35 mins 4.17 hrs 4.03 days

18

Case Study 2: ADFA Linux Dataset

• A host with Ubuntu 11.04, Apache 2.2.17, PHP 5.3.5, TikiWiki
8.1, FTP server, MySQL 14.14 and an SSH server

– web-based exploitation

– simulated social engineering

– poisoned executable,

– remotely triggered vulnerabilities, – remotely triggered vulnerabilities,

– remote password brute force attacks

– system manipulation

• No per process separation of traces

Case Study 2: ADFA Linux Dataset

Normal

of Training traces 833

of testing traces 4373

Total attacksTotal attacks

of attacks 60

of attacks traces 686

Case Study 2: ADFA Linux Dataset

Conclusions

• KSM is efficient in processing time, has low FP rate

and provides visual feedback

• Visual feedback allows an analyst to make judgment • Visual feedback allows an analyst to make judgment

about false positives and true positives

• These attributes are lacking simultaneously in HMM

and Stide

22

Screenshots of TMF Plugin:
Detective of Anomalies in
Software Systems (DASS)

Thank you!

Online surveillance of critical computer systems

through advanced host-based detection

Harmonized Anomaly Detection

Techniques – Project Track 3

Wael Khreich and Wahab Hamou-Lhadj

Software Behaviour Analysis (SBA) Research Lab

Concordia University

Montreal, QC, Canada

Dec 10, 2013

Research Threads

Model Combination

• Multiple Classifier Systems, Ensemble of

Classifiers, Ensemble Methods, etc.

• A single classifier or model may not provide

a good approximation to the underlying data a good approximation to the underlying data

structure or distribution

• No dominant classifier for all data distributions

(“no free lunch” theorem)

• True data distribution is usually unknown

• Limited amount of (labeled) data is typically

provided training

Model Combination - Advantages

• Can improve overall system accuracy

because different models may:

– Have different domains of expertise

– Converge to different local optima– Converge to different local optima

– Provide complementary information

– Commit different type of errors

• Can improve system adaptability, modularity

and scalability

Model Combination - Challenges

• Level of combination?

– data, feature, score, decision

• Combination method (or function)?

– static (voting), adaptive (weighted voting), trainable– static (voting), adaptive (weighted voting), trainable

• Selection of “best” models for combination?

– complementary, diverse, heterogeneous...

• Choosing the number of models?

– accuracy vs. complexity, design constraints

• Managing models overtime?

– changing environment

Receiver Operating Characteristics
(ROC) Curves

• True Positive:

anomaly

detected asdetected as

anomaly

• False Positive:

normal

detected as

anomaly

IBC: Iterative Boolean Combination
in the ROC Space

• For each threshold from the first detector and

each threshold from the second detector:

– Combine the responses using all Boolean

functions

– Select thresholds and Boolean functions

that improve the ROCCH

IBC - Example

IBC - Advantages

• Optimize the ROCCH

– Minimize FPR and Maximize TPR

– Implicitly the AUC

• Allow to change the operating point during • Allow to change the operating point during

operation (w/o re-training)

• Inherit the properties of the ROC curves

– Independent of cost of errors

– Independent of class imbalance

• But require a representative validation set

Case Study: ADFA System Call
Datasets (Linux)

Normal

of training traces 833

4373# of testing traces 4373

Attacks

of attacks 60

of attacks traces 686

ADFA - Attacks

• Ubuntu 11.04, Apache 2.2.17, PHP 5.3.5,

TikiWiki 8.1, FTP server, MySQL 14.14 and

an SSH server

• Web-based exploitation• Web-based exploitation

• Simulated social engineering

• Poisoned executable

• Remotely triggered vulnerabilities

• Remote password brute force attacks

• System manipulation

Experimental Methodology

Training Set

of training traces 833

Validation Set

of attacks 20# of attacks 20

of normal traces 1000

Testing Set

of attacks 40

of normal traces 3373

Combination of Responses from
Different HMMs

HMM

(N=20) Anomaly(N=20)

IBC

HMM

(N=200)
Normal

Anomaly

Combination of HMM and STIDE
Responses

HMM

(N=200)
Anomaly

STIDE

(WS = 5)

IBC

(N=200)

Normal

Conclusion

• The iterative Boolean Combination (IBC) is

shown to significantly improve the detection

accuracy while reducing the false alarms

• Combining heterogeneous detectors (HMM & • Combining heterogeneous detectors (HMM &

STIDE) seems to improve detection accuracy

over homogeneous ensembles (HMMs)

• The detection accuracy of IBC outperformed

that of the state-of-art achieved by ELM with

semantic features (Creech & Hu; 2013) using

their ADFA datasets

Future Work

• Use IBC to select the best combinations

among large number of homogenous and

heterogeneous models

– KSM, HMM, STIDE, SVM, Markov Models, etc.

• Apply the IBC of heterogeneous models to

incremental learning scenarios

– Blocks of data come over time, after putting

system into operation

Thank You

Wael Khreich

Postdoctoral Fellow

wkhreich@ece.concordia.ca

Software Behaviour Analysis (SBA) Research Lab

Concordia University

Montreal, QC, Canada

	AHLS-ShariyarMurtaza (2013_12_10).pdf
	AHLS-WaelKhreich (2013_12_10).pdf

