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Intrusion Detection Systems (IDS)

• Monitor computer or network activity for signs of 

intrusions and alert administrator

• Provide information for forensics analysis 

• Administrator confirm or refute IDS alerts
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IDS Taxonomy: Detection 
Behaviour

• Signature based Detection          
– Look for events that match patterns of known attacks           

– Can only detect attacks for which a signature exists 

• Anomaly Detection       • Anomaly Detection       
– Look for significant deviations from normal system behavior        

– Theoretically, it should be able to detect any attack
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IDS Taxonomy: Protection 
Behaviour

• Network-based (NIDS) monitor network traffic for 

multiple hosts        

• Host-based (HIDS) monitor activities of host systems

– e.g., system calls, application logs and file systems– e.g., system calls, application logs and file systems
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Host-based Anomaly Intrusion 
Detection Techniques

• Researchers applied different algorithms on logs or 

system calls to detect anomalies, such as:

– Sliding window technique

– HMM – HMM 

– Neural networks (two-class)

– K-means 

– Varied length n-gram technique

– Context Free Grammar
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Limitations

• High false positive or false alarm rate

– Any unknown sequence is considered anomaly by 

the sliding window technique 

Sequence 1 fork read read fork read read fork read read

Normal

• High processing time 

– Time to train HMM

Sequence 2 fork read read fork read fork read read fork
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Kernel State Modeling (KSM)

• KSM is an anomaly detection technique

– Transforms system calls into kernel 

modules, called states

– Detect anomalies at the level of interaction 

of states
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Transforming System Calls into 
States of Kernel Modules

State Module in Linux Source Code # of System Calls

AC Architecture 10

FS File System 131

IPC Inter Process Communication 7IPC Inter Process Communication 7

KL Kernel 127

MM Memory Management 21

NT Networking 2

SC Security 3

UN Unknown 37
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Transforming System Calls into 
States of Kernel Modules

Sequence fork read read fork read read fork read read

Sequence fork read write write write write write write read

Sequence read read read fork write close open open open
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Sequence read close write write close write close read read

Sequence Fork read read fork read read fork read read



Transforming System Calls into 
States of Kernel Modules

Density

Plot
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Anomaly Detection in Firefox
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Anomaly Detection in Login Utility
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Automatically Detecting 
Anomalies 

Trace # FS KL MM Type

1 0.60 0.20 0.00 Normal

2 0.54 0.06 0.40 Normal

3 0.73 0.04 0.23 Normal

4 0.74 0.05 0.03 Normal

5 0.82 0.01 0.03 Normal

6 0.82 0.03 0.11 Normal

7 0.55 0.15 0.19 Anomalous

8 0.53 0.16 0.20 Anomalous
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Automatically Detecting 
Anomalies 

• To determine significant deviation threshold (alpha):

– Divide normal dataset into training set, validation 

set, and testing set

– Extract probabilities from training set– Extract probabilities from training set

– Evaluate on validation set and adjust alpha till no 

false alarms

– Measure accuracy on testing set



Case Study 1: Dataset

Program # Normal Traces #Attack
Types

#Attack
Traces

Training Validation Testing

Login 4 3 5 1 4

PS 10 4 10 1 15

Stide 400 200 13126 1 105

Xlock 91 30 1610 1 2

Firefox 125 75 500 5 19
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Case Study 1: Results

Program Technique TP rate FP rate

Login KSM (alpha=0.00) 100% 0.00%

Stide (win=6) 100% 40.00%

Stide (win=10) 100% 40.00%

HMM (states=10) 100% 40.00%

PS KSM (alpha=0.02) 100% 10.00%PS KSM (alpha=0.02) 100% 10.00%

Stide (win=6) 100% 10.00%

Stide (win=10) 100% 10.00%

HMM (states=5) 100% 30.00%

Xlock KSM (alpha=0.04) 100% 0.00%

Stide (win=6) 100% 1.50%

Stide (win=10) 100% 1.50%

HMM (states=5) 100% 0.00%
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Case Study 1: Results

Stide KSM (alpha=0.06) 100% 0.25%

Stide (win=6) 100% 4.97%

Stide (win=10) 100% 5.25%

HMM (states=5) 100% 0.25%

Firefox KSM (alpha=0.08) 100% 0.60%

Program Technique TP rate FP rate

Firefox KSM (alpha=0.08) 100% 0.60%

Stide (win=6) 100% 44.60%

Stide (win=10) 100% 49.20%

HMM (states=5) 100% 1.40%
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Case Study 1: Execution Time

Size of All 
Traces 

KSM Stide HMM

Login 26.2KB 4.46 secs 0.03 secs 56.43 mins

PS 29.6KB 5.14 secs 0.11 secs 46.24 mins

Xlock 47.4MB 1.51 mins 12.3 mins 13.37 hrs
Stide 36.2MB 5.85 mins 8.53 mins 2.3 days

Firefox 270.6MB 9.35 mins 4.17 hrs 4.03 days
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Case Study 2: ADFA Linux Dataset

• A host with Ubuntu 11.04, Apache 2.2.17, PHP 5.3.5, TikiWiki
8.1, FTP server, MySQL 14.14 and an SSH server

– web-based exploitation

– simulated social engineering

– poisoned executable, 

– remotely triggered vulnerabilities, – remotely triggered vulnerabilities, 

– remote password brute force attacks

– system manipulation

• No per process separation of traces



Case Study 2: ADFA Linux Dataset

Normal

# of Training traces 833

# of testing traces 4373

Total attacksTotal attacks

# of attacks 60

# of attacks traces 686



Case Study 2: ADFA Linux Dataset



Conclusions

• KSM is efficient in processing time, has low FP rate 

and provides visual feedback

• Visual feedback allows an analyst to make judgment • Visual feedback allows an analyst to make judgment 

about false positives and  true positives

• These attributes are lacking simultaneously in HMM 

and Stide
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Screenshots of TMF Plugin:
Detective of Anomalies in 
Software Systems (DASS)









Thank you!
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Research Threads



Model Combination

• Multiple Classifier Systems, Ensemble of 

Classifiers, Ensemble Methods, etc.

• A single classifier or model may not provide 

a good approximation to the underlying data a good approximation to the underlying data 

structure or distribution 

• No dominant classifier for all data distributions 

(“no free lunch” theorem)

• True data distribution is usually unknown

• Limited amount of (labeled) data is typically 

provided training



Model Combination - Advantages

• Can improve overall system accuracy 

because different models may:

– Have different domains of expertise

– Converge to different local optima– Converge to different local optima

– Provide complementary information

– Commit different type of errors

• Can improve system adaptability, modularity 

and scalability



Model Combination - Challenges

• Level of combination?

– data, feature, score, decision

• Combination method (or function)?

– static (voting), adaptive (weighted voting), trainable– static (voting), adaptive (weighted voting), trainable

• Selection of “best” models for combination?

– complementary, diverse, heterogeneous...

• Choosing the number of models? 

– accuracy vs. complexity, design constraints

• Managing models overtime?

– changing environment



Receiver Operating Characteristics 
(ROC) Curves 

• True Positive: 

anomaly

detected asdetected as

anomaly

• False Positive: 

normal  

detected as

anomaly



IBC: Iterative Boolean Combination 
in the ROC Space

• For each threshold from the first detector and 

each threshold from the second detector:

– Combine the responses using all Boolean 

functions

– Select thresholds and Boolean functions 

that improve the ROCCH



IBC - Example



IBC - Advantages

• Optimize the ROCCH

– Minimize FPR and Maximize TPR

– Implicitly the AUC

• Allow to change the operating point during • Allow to change the operating point during 

operation (w/o re-training)

• Inherit the properties of the ROC curves

– Independent of cost of errors

– Independent of class imbalance

• But require a representative validation set



Case Study: ADFA System Call 
Datasets (Linux)

Normal

# of training traces 833

4373# of testing traces 4373

Attacks

# of attacks 60

# of attacks traces 686



ADFA - Attacks

• Ubuntu 11.04, Apache 2.2.17, PHP 5.3.5, 

TikiWiki 8.1, FTP server, MySQL 14.14 and 

an SSH server

• Web-based exploitation• Web-based exploitation

• Simulated social engineering

• Poisoned executable 

• Remotely triggered vulnerabilities

• Remote password brute force attacks

• System manipulation



Experimental Methodology 

Training Set

# of training traces 833

Validation Set

# of attacks 20# of attacks 20

# of normal traces 1000

Testing Set

# of attacks 40

# of normal traces 3373



Combination of Responses from 
Different HMMs

HMM 

(N=20) Anomaly(N=20)

IBC

HMM 

(N=200)
Normal

Anomaly







Combination of HMM and STIDE 
Responses

HMM 

(N=200)
Anomaly

STIDE 

(WS = 5)

IBC

(N=200)

Normal







Conclusion

• The iterative Boolean Combination (IBC) is 

shown to significantly improve the detection 

accuracy while reducing the false alarms 

• Combining heterogeneous detectors (HMM & • Combining heterogeneous detectors (HMM & 

STIDE) seems to improve detection accuracy 

over homogeneous ensembles (HMMs)

• The detection accuracy of IBC outperformed 

that of the state-of-art achieved by ELM with 

semantic features (Creech & Hu; 2013) using 

their ADFA datasets



Future Work

• Use IBC to select the best combinations 

among large number of homogenous and 

heterogeneous models

– KSM, HMM, STIDE, SVM, Markov Models, etc.

• Apply the IBC of heterogeneous models to 

incremental learning scenarios

– Blocks of data come over time, after putting 

system into operation
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