

A Host-based Anomaly Detection Approach by Representing System Calls as States of Kernel Modules

Shariyar Murtaza and Wahab Hamou-Lhadj

Software Behaviour Analysis (SBA) Research Lab Concordia University, Canada

Dec 10, 2013 at AHLS Meeting

Intrusion Detection Systems (IDS)

- Monitor computer or network activity for signs of intrusions and alert administrator
- Provide information for forensics analysis
- Administrator confirm or refute IDS alerts

IDS Taxonomy: Detection Behaviour

- Signature based Detection
 - Look for events that match patterns of known attacks
 - Can only detect attacks for which a signature exists
- Anomaly Detection
 - Look for significant deviations from normal system behavior
 - Theoretically, it should be able to detect any attack

IDS Taxonomy: Protection Behaviour

- Network-based (NIDS) monitor network traffic for multiple hosts
- Host-based (HIDS) monitor activities of host systems
 - e.g., system calls, application logs and file systems

Host-based Anomaly Intrusion Detection Techniques

- Researchers applied different algorithms on logs or system calls to detect anomalies, such as:
 - Sliding window technique
 - HMM
 - Neural networks (two-class)
 - K-means
 - Varied length n-gram technique
 - Context Free Grammar

Limitations

- High false positive or false alarm rate
 - Any unknown sequence is considered anomaly by the sliding window technique

									(Normal)
Sequence 1	fork	read	read	fork	read	read	fork	read	read
Sequence 2	fork	read	read	fork	read	fork	read	read	fork Unknown

- High processing time
 - Time to train HMM

Kernel State Modeling (KSM)

- KSM is an anomaly detection technique
 - Transforms system calls into kernel modules, called states
 - Detect anomalies at the level of interaction of states

Transforming System Calls into States of Kernel Modules

State	Module in Linux Source Code	# of System Calls
AC	Architecture	10
FS	File System	131
IPC	Inter Process Communication	7
KL	Kernel	127
MM	Memory Management	21
NT	Networking	2
SC	Security	3
UN	Unknown	37

[Ref]: http://syscalls.kernelgork.com

Transforming System Calls into States of Kernel Modules

	Sequence	fork	read	read	fork	read	read	fork	read	read	
	Sequence	fork	read	write	write	write	write	write	write	read	
	Sequence	read	read	read	fork	write	close	open	open	open	
	Sequence	read	close	write	write	close	write	close	read	read	
-											
	Sequence	Fork	read	read	fork	read	read	fork	read	read	
									9	Co	

dia

Transforming System Calls into States of Kernel Modules

Anomaly Detection in Firefox

Anomaly Detection in Login Utility

Automatically Detecting Anomalies

Trace #	FS	KL	MM	Туре
	\frown			
1	0.60	0.20	0.00	Normal
2	0.54	0.06	0.40	Normal
3	0.73	0.04	0.23	Normal
4	0.74	0.05	0.03	Normal
5	0.82	0.01	0.03	Normal
6	0.82	0.03	0.11	Normal
7	0.55	0.15	0.19	Anomalous
8	0.53	0.16	0.20	Anomalous
(X	Clock 5			
Pro	ogram			13 🗸

Automatically Detecting Anomalies

- To determine significant deviation threshold (alpha):
 - Divide normal dataset into training set, validation set, and testing set
 - Extract probabilities from training set
 - Evaluate on validation set and adjust alpha till no false alarms
 - Measure accuracy on testing set

Case Study 1: Dataset

Program	#	Normal Tra	#Attack	#Attack	
	Training	Validation	Testing	Types	Iraces
Login	4	3	5	1	4
PS	10	4	10	1	15
Stide	400	200	13126	1	105
Xlock	91	30	1610	1	2
Firefox	125	75	500	5	19

Case Study 1: Results

Program	Technique	TP rate	FP rate
Login	KSM (alpha=0.00)	100%	0.00%
	Stide (win=6)	100%	40.00%
	Stide (win=10)	100%	40.00%
	HMM (states=10)	100%	40.00%
PS	KSM (alpha=0.02)	100%	10.00%
	Stide (win=6)	100%	10.00%
	Stide (win=10)	100%	10.00%
	HMM (states=5)	100%	30.00%
Xlock	KSM (alpha=0.04)	100%	0.00%
	Stide (win=6)	100%	1.50%
	Stide (win=10)	100%	1.50%
	HMM (states=5)	100%	0.00%

16 Concordia

Case Study 1: Results

Program	Technique	TP rate	FP rate
Stide	KSM (alpha=0.06)	100%	0.25%
	Stide (win=6)	100%	4.97%
	Stide (win=10)	100%	5.25%
	HMM (states=5)	100%	0.25%
Firefox	KSM (alpha=0.08)	100%	0.60%
	Stide (win=6)	100%	44.60%
	Stide (win=10)	100%	49.20%
	HMM (states=5)	100%	1.40%

Case Study 1: Execution Time

	Size of All Traces	KSM	Stide	HMM
Login	26.2KB	4.46 secs	0.03 secs	56.43 mins
PS	29.6KB	5.14 secs	0.11 secs	46.24 mins
Xlock	47.4MB	1.51 mins	12.3 mins	13.37 hrs
Stide	36.2MB	5.85 mins	8.53 mins	2.3 days
Firefox	270.6MB	9.35 mins	4.17 hrs	4.03 days

Case Study 2: ADFA Linux Dataset

- A host with Ubuntu 11.04, Apache 2.2.17, PHP 5.3.5, TikiWiki 8.1, FTP server, MySQL 14.14 and an SSH server
 - web-based exploitation
 - simulated social engineering
 - poisoned executable,
 - remotely triggered vulnerabilities,
 - remote password brute force attacks
 - system manipulation
- No per process separation of traces

Case Study 2: ADFA Linux Dataset

Normal								
# of Training traces	833							
# of testing traces	4373							
Total attacks								
# of attacks	60							

Conclusions

- KSM is efficient in processing time, has low FP rate and provides visual feedback
- Visual feedback allows an analyst to make judgment about false positives and true positives
- These attributes are lacking simultaneously in HMM and Stide

Screenshots of TMF Plugin: Detective of Anomalies in Software Systems (DASS)

🆕 Pr 🖾 🗖 🗖	E kernel ⊠					· 🗆
□ 🔄 🗸	Timestamp	Source	Туре	File	Content	
	<pre></pre>	<srch></srch>	<srch></srch>	<srch></srch>	<srch></srch>	
2 myerdenig	15:02:32.952 810 542	0	exit_syscall	channel0_0	ret=-2	
	15:02:32.952 813 786	0	sys_open	channel0_0	filename=/dev/xconsole, flags=526338, mode	=2330
	15:02:32.952 817 753	0	exit_syscall	channel0_0	ret=-2	
	15:02:32.952 818 113	2	exit_syscall	channel0_2	ret=0	
	15:02:32.952 819 023	0	sys_open	channel0_0	filename=/dev/xconsole, flags=526338, mode	=2330
	15:02:32.952 820 196	2	sys_mprotect	channel0_2	start=139931578007552, len=135168, prot=3	
	15:02:32.952 823 176	2	exit_syscall	channel0_2	ret=0	
	15:02:32.952 824 376	0	exit_syscall	channel0_0	ret=-2	
	15:02:32.952 825 826	0	sys_open	channel0_0	filename=/dev/xconsole, flags=526338, mode	=2330
	15:02:32.952 829 116	0	exit_syscall	channel0_0	ret=-2	
	15.02.32 952 830 443	0	svs open	channel() ()	filename-/dev/yconsole flans-526338 mode	-2330
	Select Models		Progress Cons	Validate	Test	,
	KSM		Reading Trace	Kernel-session	-27-13	
	Sliding Window	e de la companya de la company	Transforming			
			Inserting into t	the database he	ost-app-01	

Pr 🖾 🗖 🗖	≣ kernel ⊠							- 0
_ ← ▼	Timestamp	Source	Туре	F	ile	Content		
	A <srch></srch>	<srch></srch>	<srch></srch>		<srch></srch>	<srch></srch>		
⇒ mytracing	15:02:32 952 810 542	0	exit sysc	all	hannel0 0	ret=-2		
	15:02:32 952 813 780	5 0	svs open		hannel0_0	filename=/dev/xconsol	e flags=526338 mod	le=2330
	15:02:32 952 817 753	3 0	exit sysc	all	hannel0 0	ret=-2	c, nags-520550, mot	10-2000
	15:02:32.952 818 113	3 2	exit sysc	all	hannel0 2	ret=0		
	15:02:32.952 819 023	3 0	svs open		hannel0 0	filename=/dev/xconsol	e. flags=526338. mog	le=2330
	15:02:32.952 820 190	5 2	sys mpro	otect o	hannel0 2	start=13993157800755	2. len=135168. prot=3	3
	15:02:32 952 823 170	5 2	exit sysc	all	hannel0_2	ret=0		-
	15:02:32.952 824 370	5 0	exit sysc	all	hannel0 0	ret=-2		
	15:02:32 952 825 826	5 0	svs open		hannel0 0	filename=/dev/xconsol	e flags=526338 mor	le=2330
	15:02:32.952 829 110	5 0	exit sysc	all	hannel0 0	ret=-2	c, nogs-s20550, mod	10-2000
	15:02:32 952 830 443	3 0	SVS ODED		hannel0_0	filename=/dev/xconsol	e flags-526338 mor	e-2330
	/home/umroot/exp Select Traces Time T	race ID	TI	r <mark>ace Cl</mark> Probab	assification ility Type		Software System	
	✓ 10-11-2013: 20 u	ist-android-01	C	.95	Funct	ion-foo	Android-01s	5
	9-12-2013: 22: u	ist-m04-00	C	0.30	Funct	ion-foo2	Ubuntu-UST	-0
	□ 05-12-2013: 22 u	ist-ubuntu-00	0	0.05	functi	on-foo10		
			C	0.05	Funct	ion-foo222		

Thank you!

Online surveillance of critical computer systems through advanced host-based detection

Harmonized Anomaly Detection Techniques – Project Track 3

Wael Khreich and Wahab Hamou-Lhadj

Software Behaviour Analysis (SBA) Research Lab Concordia University Montreal, QC, Canada

Dec 10, 2013

Research Threads

Model Combination

- Multiple Classifier Systems, Ensemble of Classifiers, Ensemble Methods, etc.
- A single classifier or model may not provide a good approximation to the underlying data structure or distribution
 - No dominant classifier for all data distributions ("no free lunch" theorem)
 - True data distribution is usually unknown
 - Limited amount of (labeled) data is typically provided training

Model Combination - Advantages

- Can improve overall system accuracy because different models may:
 - Have different domains of expertise
 - Converge to different local optima
 - Provide complementary information
 - Commit different type of errors
- Can improve system adaptability, modularity and scalability

Model Combination - Challenges

- Level of combination?
 - data, feature, score, decision
- Combination method (or function)?
 - static (voting), adaptive (weighted voting), trainable
- Selection of "best" models for combination?
 - complementary, diverse, heterogeneous...
- Choosing the number of models?
 - accuracy vs. complexity, design constraints
- Managing models overtime?
 - changing environment

IBC: Iterative Boolean Combination in the ROC Space

- For each threshold from the first detector and each threshold from the second detector:
 - Combine the responses using all Boolean functions
 - Select thresholds and Boolean functions that improve the ROCCH

IBC - Advantages

- Optimize the ROCCH
 - Minimize FPR and Maximize TPR
 - Implicitly the AUC
- Allow to change the operating point during operation (w/o re-training)
- Inherit the properties of the ROC curves
 - Independent of cost of errors
 - Independent of class imbalance
- But require a representative validation set

Case Study: ADFA System Call Datasets (Linux)

Normal	
<pre># of training traces</pre>	833
<pre># of testing traces</pre>	4373
Attacks	
# of attacks	60
# of attacks traces	686

ADFA - Attacks

- Ubuntu 11.04, Apache 2.2.17, PHP 5.3.5, TikiWiki 8.1, FTP server, MySQL 14.14 and an SSH server
- Web-based exploitation
- Simulated social engineering
- Poisoned executable
- Remotely triggered vulnerabilities
- Remote password brute force attacks
- System manipulation

Experimental Methodology

Training Set		
# of training traces	833	
Validation Set		
# of attacks	20	
# of normal traces	1000	
Testing Set		
# of attacks	40	
# of normal traces	3373	
		V C

Combination of Responses from Different HMMs

Combination of HMM and STIDE Responses

Conclusion

- The iterative Boolean Combination (IBC) is shown to significantly improve the detection accuracy while reducing the false alarms
- Combining heterogeneous detectors (HMM & STIDE) seems to improve detection accuracy over homogeneous ensembles (HMMs)
- The detection accuracy of IBC outperformed that of the state-of-art achieved by ELM with semantic features (Creech & Hu; 2013) using their ADFA datasets

Future Work

- Use IBC to select the best combinations among large number of homogenous and heterogeneous models
 - KSM, HMM, STIDE, SVM, Markov Models, etc.
- Apply the IBC of heterogeneous models to incremental learning scenarios
 - Blocks of data come over time, after putting system into operation

Thank You

Wael Khreich Postdoctoral Fellow wkhreich@ece.concordia.ca

Software Behaviour Analysis (SBA) Research Lab Concordia University Montreal, QC, Canada